If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2-72a-26=0
a = 2; b = -72; c = -26;
Δ = b2-4ac
Δ = -722-4·2·(-26)
Δ = 5392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5392}=\sqrt{16*337}=\sqrt{16}*\sqrt{337}=4\sqrt{337}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-4\sqrt{337}}{2*2}=\frac{72-4\sqrt{337}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+4\sqrt{337}}{2*2}=\frac{72+4\sqrt{337}}{4} $
| 7-2a=31 | | 3x-7+3x-7=28 | | 12x+2=9x-23 | | 4x+1/4=5x+3/4 | | (1-4x)=0 | | 3(x+5)=51 | | 5x2=20x+15=0 | | -2(2z+4)-3(3z-8=) | | w-10=4 | | f-9=-6 | | 0=6+k/2 | | 3(-7y+2)=132 | | 3w+1=2 | | v+-4=-18 | | 1=-a-8/5 | | (6x-1)=0 | | (-3x+7)=0 | | 5-2x=65 | | 8=u-10 | | (10x+3)=0 | | -9=6+s | | -3(x-5)+5x=10 | | (9x-5)=0 | | -11n^2+49n+30=0 | | 5(q+15)-3=7 | | (x-2)^4=0 | | -7(p-10)+9=51 | | -18=9x=54 | | 2|5=3|2x-1 | | 8(y-1)-y=2y+ | | 1/2*7h=17.5 | | 6x=28=-20 |